Predicting stock price changes by using NLP and
Machine Learning on Google News Data

Michael Jasper
December 17, 2015

Abstract

Textual data is gathered from Google News using a web scraper (query-
ing the top 10 holdings of the S&P 500) as well as historical stock data for
these companies. A feature set is extracted from this corpus and a neural
network is trained to create a model between the language features and
daily stock price changes. Using this model, we can predict with moderate
accuracy the stock price changes based on current news data.

1 Introduction

There are many[2] learning methods for predicting changes in stock market
prices, including analysis of quantifiable data[5] and classification and sentiment
analysis of news articles[10], press releases, and even Twitter posts[3]. The
goal of this project is to perform natural language processing on news article
headlines and summaries gathered from Google News by extracting features
vectors from that corpus and historical outcome data based on the change in
individual stock prices, and to train a neural network to predict future changes
based on that data.

The desired outcome is a model which will be able to take current Google
News headlines and summaries and predict a future change in price of the
stock. The scope of the training data is limited to the Top 10 holdings of
the S&P 500 from January-November 2015. The technologies used in this
project are Node.js, NodeNatural (an open-source library for natural language
processing)[4], Python, and PyBrain[9] (an open-source package for Machine
Learning).

2 Problem Description

The question that this project seeks to answer is: Can a model be created which
will predict future stock price change direction, using English language news and
corresponding historical stock data? In addition to answering this question, a
secondary challenge was creating or acquiring a suitable data set.

3 Approach & Methods

3.1 Data set creation

Upon a thorough search, no suitable data set was found which would meet the
conditions for this model. The requirements for the data set are: it contained
current textual news data from a variety of news sources about stock holdings
of the S&P 500, along with stock price information for the corresponding dates.
Although only ancillary to the research question, a somewhat novel approach
was required to build the required data set. This method is described here.

The Google News service was deemed an adequate provider of news data
from a variety of sources, as well as enabling querying news data by data and
search term. Although it is not stated in the terms of use, Google discourages
scraping the news data by “cutting off” repeated programmatic requests.

By using the following method, news data was obtained to build a data set:

e Randomly selecting a User Agent String (UAS) from a set of the 10 most
popular UAS’s and sending that value as a request header.

e Making requests serially, with a wait-time of 2500 milliseconds, plus or
minus a random value between 0 and 1000 milliseconds, between requests.

e Alternating IP addresses every 100 requests.

Using these three methods, a data set of news data from January-November
2015 was created.

Historical stock data was obtained using the Yahoo! Finance[l] historical
data web service, and associated with its related textual news data.

Listing 1: Data Point Example

{

"bodies" : ["No companies have done this better over the past decade than
JPMorgan Chase and Wells Fargo ..."],

"date" : "7/30/2015",

"headlines" : ["Buy Bank Stocks Like a Boss", "Wells Fargo to Withdraw from
Mortgage Marketing..."],

"symbol" : "WFC"

}

3.2 About the data set

e Corpus consists of 2352 entries (news data per stock per day with price
change).

e Corpus contains 740651 words.

3.3 Processing of Textual Data

Using the Bag-of-Words technique[7], the text data was transformed into a
vectorized representation, suitable for ingestion into a learning algorithm.
First, a feature set was created using the following procedure:

1. A set of distinct words is extracted from the corpus.

2. This set is normalized for spelling and tense using the Stemming feature
of NaturalNode[4] (a Node.JS natural language processing library).

3. Stop words (common words such as “and” or “the”), as well as stock
specific words (such as “iphone” or “drilling”) are removed from the set.

4. A dictionary is created of word and word-counts.

5. The median 80% of words are selected as features for the Bag-of-Words
representation.

Individual data points (news articles) are then compared against this feature
set to create a vectorized representation of the data point.

Listing 2: Vectorized Data Example

{
"input": [0, O, O, O, O, O, 1, O, O, O, O, O, O, O, 1, O, O, O, O, O, O, O,
O’ O’ 0’ O’ 1’ O’ 1’ O’ O’ O’ O’ 1’ O’ o’ 1’ O’ 0’ O’ O’ O’ 1’ O’ O’
0, 0,1,60,1,0,1,0,0,1,1,0,1,0,1,0,0,0,0,0,1, 1, 1,
o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, 1, O, O, O, O, O, O, O,
0, 1 0,1,0,0,0,1,0,0,0,0,0000,0,1,0,0,0,1,0,
o, o, o, o, 0, 0, 0, 1, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0, O, 1, O, O, O, O, O, O, 1, O, O, 1, O, O,
o, 1, o, o, 0, 0, 0, 0, 0, 0, O, O, 1, O, O, O, O, O, O, O, O, O, O,
1’ 0’ 0’ O’ O’ O’ O’ O’ 1’ O’ 1’ 1, O’ 0’ 0’ 0’ 1’ O’ O’ O’ O’ O’ O’
o, 0, 0, 0, 0, 0,0, 1,60,1,1,1,0,1,0,0,0,00,0,1,0,0,
i, 0, 1, 1, 0, 1, 1, 1],
"output":{"direction":1}
}

3.4 Neural network model creation

The data set of vectorized news data and stock price changes is split into two
groups: training and testing data. Two methods were were used to divide the
data set: The first method was to iterate through the data set, and randomly
place a certain percentage of the data rows in a training array or testing array.
The second method explored was to select a date that represented a mid-point
of the data, and place data points prior to that date in the training set, and
data points after that date in the testing set.

3.5 Neural network characteristics

The network is a standard Trained Network from the PyBrain library, using the
library’s Back Propagation Trainer. Over the course of developing and training
the network, each of the following configurable characteristic was adjusted to
find the most optimum combination:

e Number of Hidden Layers (formula below)
e Learning Rate = 0.001
e Momentum = 0.99

e Maximum Epochs = 20

The number of Hidden Layers that was found to produce the best outcome
is represented by a simple formula related to the number of input features (1st
layer neurons) to the network:

Figure 1: Formula for finding the optimum number of hidden layers

Features

Hidden Layers = | 3]

3.6 Measuring model accuracy

After the network is trained, each test data point is run through the model, and
the model’s predicted outcome is measured against the actual outcome of that
days stock price. The accuracy of the model as a whole is calculated simply
by measuring the total number of predictions, divided by the number of correct
predictions (actual outcome is saved as meta-data with the training and test
data):

Figure 2: Formula for determining model accuracy

Correct Predictions
Total Predictions

Model Accuracy =

4 Results
4.1 Method 1

Method 1 of grouping the data uses a mid-point value to separate data into
test and training groups. This method shows a positive value in the predictive
power of the model generated by the network, with the most predictive model
generated being 76.7% accurate. This is less accurate than the the models
generated using Method 2 for grouping test and training data — but perhaps a
more accurate simulation of real world use.

Figure 3 shows the distributions of predictions for up-change and down-
change predictions. The left distribution (blue) shows predictions for data who’s
actual outcome was a downward change. The right distribution (red) shows
predictions for data who’s actual outcome was an upward change. While there
is an overlap between distributions, a distinct distribution is formed for each
category of prediction.

Figure 4 Shows the prediction error and success rates for both downward and
upward change predictions, if a threshold is set at 0.5 to differentiate between
negative and positive change predictions.

4.2 Method 2

Method 2 of selecting training and test data involved iterating through the data
set, and randomly assigning data points to either training to testing groups.

Figure 3: Model accuracy distribution

Number of Predictions
——

SV aY AN

El 05 05 1 15

Neural Network Model Output

Figure 4: False and positive error and success rates

false positive predictions

Number of predictions

false negative predictions

correct positive

- +

This model achieved a maximum accuracy of 82.9%.

4.3 Model Accuracy

Over the course of developing, testing, and tuning different neural network
configurations, data was recorded about the accuracy of each model generated
by the network. Figure 5 shows the accuracy distribution of 200 models (100
created using each method of assigning groups).

Method 1 (blue series on the left) has an average accuracy of 65%, with a
standard deviation of 5%.

Method 2 (red series on the right) has an average accuracy of 72%, with a
standard deviation of 8%.

5 Discussion

Returning to the initial research question — Can a model be created which will
predict future stock price change direction, using English language news and

Figure 5: Accuracy of models

Number of Models

0 0.1 0.2 03 04 05 0.6 0.7 08 0.9 1

Accuracy of Model

corresponding historical stock data? — It is fair to answer: yes. With mean
accuracies in the 60-70% range, it is conclusive that there is predictive power
in Natural Language Processing of news data and Machine Learning techniques
on this vectorized data.

5.1 Practical Limitations

This research project has shown that it is possible to predict future changes in
stock price, based on a machine learning model of textual news data of certain
stocks. There are however, practical limitations to this approach:

e Time to acquire news data: The model and technique could be employed
by traders with fast access to news data (for example, a subscription to
the AP News Wire). A service such as this could provide news articles or
press-releases within milliseconds of publication. Trades by this group of
investors (High Speed Investing) would affect the price of the stock long
before the 5-10 minutes required for that same news data to appear on
the Google News Service[6].

e Location of trades: Trades located physically closer to a stock exchange
(with the same prediction information) will be processed first. The price
would adjust accordingly, before a further away trade was executed[8].

6 Future Work

Questions that may be answered through further research are:

e Would increasing the scope of the data to more than the top 10 holdings
of the S&P 500 provide more accurate predictions?

e Could another Natural Language Processing technique other than the Bag-
of-Words method provide better vectorized data?

e Could the accuracy of Method 1 for data group division be improved?

References

[1]
2]

[6]

[7]
8]

[9]

[10]

Yahoo! finance, Dec. 2015.

A. C. Andersen and S. Mikelsen. A novel algorithmic trad-
ing framework applying evolution and machine learning for portfo-
lio optimization. Master’s thesis, Department of Industrial Eco-
nomics and Technology Management (IQT), http://blog.andersen.im/wp-
content /uploads/2012/12/ANovelAlgorithmicTradingFramework.pdf, Dec.
2012.

J. Bollen, H. Mao, and X.-J. Zeng. Twitter mood predicts the stock market.
Journal of Computational Science, 2(1):1-8, Oct. 2010.

R. E. Chris Umbel. NaturalNode/natural.
https://github.com/NaturalNode /natural.

C. Dunis, J. Laws, and J. Rudy. Profitable mean reversion after large price
drops: A story of day and night in the S&P 500, 400 mid cap and 600 small
cap indices. Social Science Research Network Working Paper Series, June
2013.

M. Farrell. High speed trading puts investors on losing end - aug. 15, 2013.
Aug. 2013.

V. Paruchuri. Natural language processing tutorial. Technical report.

G. Rogow. Colocation: The root of all High-Frequency trading evil? -
MarketBeat - WSJ. Sept. 2012.

T. Schaul, J. Bayer, D. Wierstra, S. Yi, M. Felder, F. Sehnke, T. Riickstie},
and J. Schmidhuber. PyBrain, 2010.

J. J. Zhai, N. N. Cohen, and A. Atreya. Sentiment analysis of news articles
for financial signal prediction. 2011.

